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Abstract:  Groundwater modetling requires proper and accurate hvdrogeclogical properties such as
transmissivity and hydraulic conductivity. This study identified the spatial patterns and variations in
transmissivity in the southeast of Yun-Lin County and the north of Chia-Yih County in Taiwan to reveal and
map the spatial characteristics of transmissivity for hydrogeclogical study.  The spatial maps of transmissivity
were estimated and simulated using ordinary kriging, sequential Gaussian simulation and simuiated annealing
methods.  Correlation analysis revealed that realizations of simulations could fully display the characteristics of
transmissivity within this study area. The spatial maps of the estimation and simulation of ransmissivity
indicated that sequential Gaussian simulation and simulated annealing could not only reproduce the statistics and
spatial variation of the measured transmissivity, but could also identify the global spatial continuity patterns of
transmissivity in this study area. The realizations generated by sequential Gaussian simulation displayed
significantly higher local heterogeneity than those generated by simulated annealing. The realizations of
simutated annealing simulation are consistent rather than consistently in presenting the spatial patterns of
transmissivity.
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1. INTRODUCTION to  characterize the spatial  variabilities of
transimissivity for groundwater models.  Because of
these variations in hydrogeological properties
nummnerous authors have used statistical procedures to
model spatial structures of interesting geohydraiogic
and physicochemical properties.  Examples of such
works include Egeleston at al. [1996], Fabbei [1997],
Christensen [1997], Di Federico and Neuman [ 1997],
Salandin and Fierotto [1998], among others.

Transmissivity and  hydraulic  conductivity are
fundamental  parameters  of  hydrogeological
properties in characterizing aguifers for groundwater
models.  Proper modeling of preferential flow paths
and of fransport behavior requires the use of
transmissivity fields that reproduce the spatial
variability patterns observed in the field [Capilla ot
al, 19981 These transmissivity fields sometimes

contain significant uncertainties, including complex
(unexplainable) variations in observed wvalues of
measurable attributes over the investigated area.
These spatial and temporal variations can be
extremely complicated. Thus, the reconstruction of
the transmissivity field from the experimental
hydraulic head data, an inverse problem, arises not
ounly from the complexity of the diffusion equation
linking the two variables, but also from considering
the physical aspects of the site under study; such as
the boundary conditions, the effective recharge, and
the geology [Roth, 1998].  Therefore, it is important
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Geostatistical techniques like kriging incorporate the
spatial or temporal characteristics of actual data into
statistical  estimation. H data appear highly
continuous in space, points closer to the estimates
receive higher weights than those farther away.
Kriging estimates can be regarded as the most
accurate linear estimator {i.e. Best Linear Unbiased
Estimator). The estimated values based on kriging
display a lower variation than the actual investigated
values.  To correct this shortcoming. geostatistical
simulation can be performed. Simulation generates
equaliy likely sets of values for a variable, which are



consistent  with available In-situ measurements.
This frequently implies that the simulated values
have the same mean and variogram as the original
data, and may alse coincide with the original data at
measurement points.  Simulation focuses mainly on
reproducing the fluctuations in the observations,
instead of producing the optimal prediction {Sterk
and Stein, 1997].

Geostatistical conditional simulation, such as by
simulated annealing and  sequential  Gaussian
simulation, attempis not only to generate 2 set of
values with some specified mean and covariance, but
also to reproduce observed data at several locations.
Therefore, geologists use simulation to visualize
fluctuations in major geologic patterns, investigate
the fossil morphelegy, and map stratigraphical and
structure surfaces [Christakos, 19921,  Recent works

are Varljen and Shafer [1991], Eggleston et al. [1996],

Mowrer [1997], Sterk and Stein [1997}1, Kentweli et
al, {1999], Wang and Zhang [1999], Lin and Chang
[2000a], Lin et al. {2000], and Lin and Chang
{2000b).

This work uses conditional simulation techniques and
ordinary kriging to produce the realizations and maps
of trasmissivity in a real case study. The descriptive
statistics, spatial structure {experimental variogram),
correlation and spatizl patterns of estimated and
simulated results are also discussed herein.  Finally,
the estimation and simulation results are mapped into
GIS o compare with the spatial distribution of
geological formation for characterizing the spatial
distribution of estimated and simulated transmissivity
with measured data in the study area.

2. MATERIALS AND METHODS

In this study, the selected area (154.67 km®) is on the
east banks of the middle and upper streams of the
Peikang River in the southeast part of Yun-Lin
County and the north part of Gia-Yih County, Taiwan
(Figure 13. The geological features of the study
area from Dulliu Hili to the Peikang River include the
Toukoshan Formation, Lichi Formation, Terrace
Deposits and Alluvium, as presented in Figure 1.

The fan has a typical alluvia fan stratum structure,
with a thick gravel layer on the east side reducing

gradually to the west and southwest, while the muddy
and sandy stratum thickens [Lin et al. 2000]. Tsao
{19827 had studied and reported the field data of the
well-drilling log and the aguifer of this study area.
According to the reports of Tsao [1982] and Lin et al.
{20007 Tapei city has the deepest well bores in the
county, with an average depth of 199.7m.
Meanwhile, wells in Talin Town ranks second. with
an average depth of 179.3m, and wells in Tounan and
Kukeng towns are 176.5m and 106.5m, respectively
[Tsao 1982, Lin et al., 20001, The average thickness
of the aguifer in the well-drilling log ranges from
30.6-52.8m.  The depth of the aguifer in the aliuvia
fan part of the Chuc-Shuel River and the West Bank
of the Peikang River is 80m at Huwel town and an
average of 100m at Tuku and Yuanchang towns {Lin
et al. 2000]. Figures 2a and 2b present the locations
of sampling wells of transmissivity data were
measured by using the pumping test and provided by
Yu-Ling frrigation Association in.  The measured
values of transmissivity ranged from 8.637 to
407,483 (m*/hr) at the sampling points of this study
ared.
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{a) The locations of sampling wells in study area; (b) Measured Values of transmissivity



Geostatistics provide a variogram of data within a
statistical framework, including spatial and temporal
covariance functions.  As expected, these variogram
models are termed spatial or temporal structures, and
are defined in terms of the correlation between any
two points separated either spatially or temporaliy.

Variograms provide a means of quantifying the
commonly observed relationship whereby samples
close together tend to have more similar values than
samples farther apart. The variogram o (h)
defined as:

p(R) = (172}

where h denotes the lag distance separating pairs of
points, Far represents the variance of the argument,
Z(x) is the value of the regionalized variable of
interest at location x, and Z(x + h) denotes the value
at the focation x + h.

‘@ Z(x) - Zix + B)) {1}

An experimental variogram 7 (h), is given by:

y ()= /[2n(!1)} f.{(x “h-2()P (2)
where y (h) denotes the variogram for interval lag
distance class h, and n(h) represents the number of
pairs separated by the lag distance h.

Ordinary kriging, as applied within moving data
neighborhoods, s a non-stationary algorithm
corresponding to a non-stationary random function
model with varying mean but stationary covariance
[Deutsch and Journel, 1992].  Kriging estimates
are  weighted sums of the adjacent sample
concentrations. The weights depend on the
correlation structure exhibited.  The criterion for
selecting these weights is to minimize estimation
variance. In this framework, kriging estimates can
be regarded as the most accurate linear estimator (i.e.
Best Linear Unbiased Estimator). At an unsampled
location and for a given variogram, a kriging estimate
can simply be considered an optimally weighted
average of the surrounding sampled data [Cressie,
1990],  Kriging estimates the value of the random
field at an unsampled location X, based on the given
measured values in the linear form [Rouhani, 1985]

il f})
J= A, Z2(X) (3

where Z*(XD) denotes kriging estimates at Xy, Z(X;}
represents measured values at X;, i=1---, ¥, and
Ao is kriging weight for Z{X;) to estimate Z'(X,).

2.2 Sequential Gaussian Simulation

Sequential Gaussian simulation assumes a Gaussian
random field, thus the conditional cumulative density
function (cdf) is completely characterized by the
mean value and covariance [Fredericks and Newman,

1969

1998]. In the sequential Gaussian simulation
process, simulation is conducted upon the Gaussian
transformation of the available measurements. so that
each simulated value is conditional on the originai
data and all previously simulated values [Deutsch and
Journel, 1992; Rouhani et al., 199351 A simulated
value at a one location is randomly selected from the
normal distribution function defined by the kriging
mean and variance based on neighborhood values.
Finally, the simulated normal values are back
transformed into simulated values for an original
variable. The simulated value at the new randomly
visited point value is dependent upon bolh the
original data and previously simulated values. This
process is repeated until all points are simulated.

2.3 Simulation by Simulated Annealing

The annealing algorithm requires that the image is

perturbed by simulating thermal  perturbation
[Deutsch  and Cockerham, 1994]. However,

simulated annsaling is an optimization technique to
generate an initial field by drawing random values
from a given histogram. Swapping the values in
pairs of grid nodes not involving a conditioning
datum, sequentially modifies this initial field. A
swap is accepted if the objective function is lower
[Deutsch and Journel, 19921, This  objective
function (O) is defined as an average squared
difference between the experimental and given
variogram.

[ i) = {4
0=
Z’ y(hy'

Where y(h) is the prespecified variogram, and  v'(h)
represents the variogram of the simulated realization,

A temperature function (the Boltzman distribution) in
the simulated annealing procedure controls how the
speed at which the optimization function is reduced
by allowing certain switches that increase the
optimization function [Deutsch and Journel, 1992;
Eggleston et al, 1996]. The parameter, t, of the
temperature function is termed the temperature in the
annealing procedure.  The higher the temperature,
the more chance of an unfavorable swap being
accepted {Deutsch and Journel, 19921,

l {f()ﬂLH g ( H[{i‘ ol
Placcept} = { Sn i =)
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in this work the variogram models of transmissivity
are aiso fitted within GS+ [Gamma Design Software,
19951 The source codes of OKB2DM, SGSIM and
SASIM in GSLIB [Deutsch and Journel. 1992] were
modified to perform ordinary kriging and simulated
annealing  for  estimating  and  simulaling
transmissivity.  These simulations and estimates
were performed in a square 38 column by 28 row grid



comprising 1664, 50m by 30m cells. Five
simulations of seguential Gaussian and simulated
annealing are performed in these 1664 cells. The
results are transferred into Arcview 3.0z [ESRI, 1998]
to display them and identify the spatial patterns of
transmissivity.

3. RESULT AND DESCUSSION
3.1 Variography

A reasonably consistent set of best-fit models with

standard deviation values of kriging estimation of
transmissivity are 87.066 {(m*/hry and 39.848 (mihe).
Meanwhile, the median values [¢1.6]] -72.950{m*/hr)
and 62.265-70.000(m*hr)}] of the transmissivity
simulations using sequential Gaussian and simulated
annealing  were  almost  identical o that
[64.275(m*/hr)] of the measured transmissivity data.

Moreover, the standard deviation  values
[85.074-91.010(m%hr) and §7.643-94.618(m*/hr)] of
the results from sequential Gaussian and simulated

annealing simulation also approached the empirical
rransmissivity data value {92.082{mg/kg)].

minimum RSS (Model reduced sum of squares) and
- 2z . .

maximum ° {Regression coeflicient) values were

generated by least squares madel fitting of variogram

LT Gaussian simulated realizations have a common
of ransmissivity data,

origin and exhibit a similar spatial pattern of
3.2 Statistics Concerning Estimation and tranmissivity in the study area.

Simulation - . . .
Table 3 lists Pearson correlation coefficients among

kriging estimated results and simulated realizations of
simulated annealing.  The range of correfation
coefficients between kriging estimates and each
realization varies from 0.377 to 0.787, and exhibits a
strong linear correlation, as itlustrated in Table 3.

The ordinary kriging estimates and conditional
simulations were based on the above variogram
models and the 92 transmissivity observations.
Tables | summarize the descriptive statistics refated

Table 1. Descriptive statistics of kriging estimates and simulations
N Mean Median S5td. Dev. Skewness  Kurtosis Min Max
QK 1664  87.066 73360 39.8438 1.211 0.330 33,783 196.713
RIOH 1664  90.203 61.oll 38.642 1913 3.557 8.709 407971
5G82 1664 91790 63.84%  90.753 1.865 3.222 8.650 407.980
SG83 1664  99.1090 72950  94.618 1.761 2.695 2.697 407859
SGS4 1664 91,165 64274 §9.023 1.908 3.469 8642 407920
SGSS 1664 36736 59406  BT.643 1.917 3.494 8.649  407.690
SAS: 1664 90433 64749 85074 1.866 3.577 8.637 407483
BAS2 1664 93587 63383  91.010 1.803 3.027 8.637 407483
5AS83 1664 94880  70.000  90.093 1.771 2,963 8.637 407.483
SA84 1664  90.290  62.265 89.262 1.900 3.427 8.637 407.483
SASS 1664 91251 £5.593 87.826 1.868 3.423 8.637 407483

OK: Ordinary kriging; 3GS: Sequential Gaussian simulation; SAS: Simulated annealing simutation,

Table 3. Pearson correlation coefficients of estimation
and simulated annealing simulation

5GB5 OK SAST  SAS2  SAS3  SAS4 SASB5
OO0 D773%% (.577%% (.656%% Q78T (Q685%F

Pearson correlation coefficients of estimation
and sequential Gaussian simulation

OK 8GSI  SGSZ 8GS3  5GSH4
QK 1.000 0.209%F 0.326%% (Q175%% Q215%% O 171+ 0K

Table 2.

SGSE 0.200%F 1000 0.135%% (. 120%% 0.096%% 0.i14%* SAST 0.773%F 1000 0.602%% (.712%F (.8427%% (.739%%
SGS2 0.326%F 0135 1.000 0.124%% 0.093%* Q. 1415 SASZ 0577%% 0.602%F 1 LO0O G.611FF 0.649% (088
SG83 0175+ 0,120%F 0.124%  LO00 0.069%F  (.054* SAR3 0.656%% (.712%% (L611H* 1000 0.629%+ (a2d4r*
SGS&4 0.215%F 0.096%F G.093%F 0.069% 1000 0.039* BAB4 0787 (.84Z%F Q.edOrE 0.629%F  LOO0 O.811%F
SGSS 0.171%F Q114 Q141 0.054% 0.059*%  1.000 SAS8 (L.685%F 0,730 (6R8%F (.624% QB1IH* £O00

* Correlation 1s significant at the .05 fevel (2-taled test)
*+ Correlation is significant at the 0.01 level (2-tatlad test)
CHC Ordinary kriging

SAS: Simulated annealing simulation.

* Correlation is significant at the 0.03 jevel (2-tailed test)
#% Correlation is significant at the 0.01 level (2-tailed test).
OK: Ordinary kriging;
5GS: Sequential Gaussian simulation
to ordinary kriging, Gaussian sequential simulation

and simulated annealing results. The mean and These results also imply that the kriging estimates

1970



and simulated annealing simuiated realizations have a
common origin and exhibit a similar spatial pattern of
franmissivity in the study area.  Moreover, the
correlation coefficients among the realizations are
strongly significant at the 0.01 probability level
according to the 2-tailed test, as presented in Table 3,
The range of these coefficients is from 0.602 to
0.842.

3.4 Spatial Patteras of Transmissivity

The estimates and simulations were mapped using
Arcview 3.0a (Figures 4 and 5).  The ordinary
kriging estimate maps (Figure 4a) confirmed that
kriging tended to show spatial patterns but smooth
extreme values of the empirical transmissiivity data
set. These kriging results might overestimate the
size. of high and low concentration areas of
transmissivity, and underestimate areas  with
extremely high and low concentrations of
ransmissivity.

The kriging estimated and conditicnal simulated
transmissivity maps illustrate that the low values
formed an approximately triangular shape in the
center of this study area (Figures 4 and 5). These
maps display that the transmissivity values gradually
increased from this triangular shape area to the
surrounding area of this center area, as illustrated in
Figures 4 and 5. The high transmissivity values
were located on the Dulliu Hill in the east part of the
study area and on the west of the Peikang River in the
northwestern part of the study area, as ilustrated in
Figures 4 and 5. Moreover, the transmissivity
values of the study area gradually decreased from the
Dultliv Hill to the center of the area,

The above-simulated maps of transmissivity also
illustrate a high heterogeneity area of transmissivity
especially in sequential Gaussian simulated maps.
These simulated maps emphasize the significant
variation across short distances and provide a
measure of spatial uncertainty. These maps also
reveal that the realizations of transmissivity generated
by sequential Gaussian simulation reflected more
local heterogeneity than those generating by
simulated annealing. However, the simulated
annealing simulated transmissivity maps fully display
the characteristics of the geological formation of this
study area (Figures 1, 4 and 5). These maps aiso
confirm that the study area has a rather gypical alluvia
fan stratum structure, since the gravel laver on the
east side is thick, gradually thinning towards the west
and south-west, while the thickness of the muddy and
sandy stratum increases correspendingly.

4. COMCLUSIONS

This work has demonstrated that kriging and
conditional  simulation  techmiques,  including
Gaussian  sequential  simulation and  simulated

1871

annealing can be used lo identify pollution sources
and patterns, ordinary kriging failed to reproduce the
statistics of transmissivity better than simulation
techniques. [n addition to reproducing the spatial
variation of the measured transmissivity, sequential
Gaussian simulation and simulated annealing also
simulated global spatial continuity and discontinuity
patterns, Moreover, the simulaied annealing method
achieved more accurate results than sequential
Gaussian simulation and kriging by comparing o
global statistics and spatial patterns of measured
transmissivity data.  Finally, the realizations of

simulated annealing simulation are consistently in
presenting the spatial patterns of transmissivity in this
study area.
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